Coordination Chemistry of the Hg-MerR Metalloregulatory Protein: Evidence for a Novel Tridentate Hg-Cysteine Receptor Site

Jeffrey G. Wright,[†] Him-Tai Tsang,[‡] James E. Penner-Hahn,*,[‡] and Thomas V. O'Halloran*,^{†,§}

> Department of Chemistry and Department of Biochemistry, Molecular Biology, and Cell Biology Northwestern University Evanston, Illinois 60208-3113 Department of Chemistry, University of Michigan Ann Arbor, Michigan 48109-1055 Received October 24, 1989

The MerR metalloregulatory protein is a member of a class of metal responsive factors that trigger cellular responses at the genetic level.¹⁻³ A specific and ultrasensitive inorganic sensor, MerR switches on transcription of the bacterial mercuric ion resistance genes (*mer*) in the presence of nanomolar Hg(II) or micromolar Cd(11).^{4,5} Mercuric ion binding in a stoichiometry of one metal ion per MerR dimer^{6,7} converts MerR from a repressor to a strong activator of transcription.^{5,6} Studies of sitespecific mutations in each of the four cysteine residues per MerR monomer have led to the proposal that Hg(II) utilizes a linear bis-coordinate geometry in bridging Cys126 residues in the MerR dimer with possible ancillary ligation of the Cys82 residues.⁸ However, low-energy LMCT transitions in the Hg-MerR UV difference spectra are characteristic of mercuric-thiolate complexes with a primary coordination number of 3 or 4.9 We present evidence from extended X-ray absorption fine structure (EXAFS) spectroscopy and chemical modification experiments that Hg-MerR has a three-coordinate, Hg(S-Cys), environment. This unusual tridentate heavy metal receptor site is consistent with the thermodynamic stability of $[Hg(SR)_3]^-$ complexes^{10,11} and may account both for the high-affinity Hg(II) binding and for the selectivity for Hg(II) over other soft group IIB metal ions that prefer tetrahedral metal-thiolate coordination.5

Purified Tn501 MerR protein^{6,12} was treated with excess mercuric ion in the presence of 1 mM dithiothreitol, purified by gel filtration, and precipitated with 2 M (NH₄)₂SO₄. The wet precipitate was studied directly or dissolved in 10 mM triethanolamine-bicarbonate buffer (pH = 7.5) and lyophilized. The Hg/protein ratio, determined for each sample by using graphite furnace atomic absorption and UV spectroscopy, was 0.94 ± 0.10 Hg/MerR dimer. XAS data collection and reduction followed

- in press
- In press.
 (3) Ralston, D. M.; O'Halloran, T. V. Adv. Inorg. Biochem., in press.
 (4) Ralston, D. M.; Frantz, B.; Shin, M. K.; Wright, J. G.; O'Halloran, T. V. In Metal Ion Homeostasis: Molecular Biology and Chemistry; UCLA Symposium on Molecular and Cellular Biology, New Series Vol. 98; Winge, D., Hamer, D., Eds.; Alan Liss: New York, 1989; pp 407-416.
 (5) Ralston, D. M.; O'Halloran, T. V. Proc. Natl. Acad. Sci. U.S.A.

- submitted for publication. (6) O'Halloran, T. V.; Frantz, B.; Shin, M. K.; Ralston, D. M.; Wright, J. G. Cell 1989, 56, 119-129.
- (7) Shewchuk, L. M.; Verdine, G. L.; Walsh, C. T. Biochemistry 1989, 28, 2331-2339.
- (8) (a) Shewchuk, L. M.; Verdine, G. L.; Nash, H.; Walsh, C. T. Bio-chemistry 1989, 28, 6140-6145. (b) Complementation studies of site-directed cysteine mutants in the homologous Bacillus RC607 MerR protein have led cysteine mutants in the nomologous Bacillus KC60/ MerK protein have led to the proposal of a three-coordinate Hg(SR)₃ species. Hellman, J. D.; Ballard, B. T.; Walsh, C. T., personal communication.
 (9) Watton, S. P.; Wright, J. G.; MacDonnell, F. M.; Bryson, J. W.; Sabat, M.; O'Halloran, T. V. J. Am. Chem. Soc. 1990, in press.
 (10) Persson, l.; Zintl, F. Inorg. Chim. Acta 1987, 129, 21-26.
 (11) Cheesman, B. V.; Arnold, A. P.; Rabenstein, D. L. J. Am. Chem. Soc.

Figure 1. (A) MerR Hg EXAFS data. k^3 -Weighted EXAFS spectra for MerR. Solid line = experimental data; dashed line = best fit using a single shell of sulfur. From top: sample 2, sample 3, sample 4, average of samples 2-4. Spectra offset vertically by +15, +5, -5, and -15, respectively, for clarity. (B) Fourier transforms. From top: sample 2, sample 3, sample 4, average of samples 2-4, showing lack of outer-shell peaks. Spectra offset vertically by 22.5, 15, 7.5, and 0, respectively, for clarity.

standard methods.¹³ Sample integrity was indicated by reconstitution of full transcriptional activity after X-ray measurements. Fourier transforms were calculated by using k^3 -weighted data over the range 2-13.2 Å⁻¹. Empirical amplitude and phase functions were used for curve fitting.14

The EXAFS spectra (Figure 1A) and corresponding Fourier transforms (Figure 1B) for Hg-MerR show only one resolved shell of scatterers, regardless of sample preparation method. The best single-shell Hg-S fits are shown in Figure 1A and summarized in Table I. These suggest a three-coordinate Hg(II) site with an average Hg-S distance of 2.43 Å. As illustrated by the sulfur-only fits for the averaged data, the EXAFS goodness of fit alone cannot be used to determine uniquely the coordination

0002-7863/90/1512-2434\$02.50/0 © 1990 American Chemical Society

^{*} Authors to whom correspondence should be addressed.

[†]Department of Chemistry, Northwestern University. [‡]Department of Chemistry, University of Michigan.

Department of Biochemistry, Molecular Biology, and Cell Biology,

⁽¹⁾ O'Halloran, T. V. In *Metal Ions in Biological Systems*; H. Sigel, Ed.;
(2) Helmann, J. D.; Shewchuk, L. M.; Walsh, C. T. *Adv. Inorg. Biochem.*,

^{1988, 110, 6359-6364}

⁽¹²⁾ O'Halloran, T. V.; Walsh, C. T. Science 1987, 235, 211-214.

⁽¹³⁾ Scott, R. A. Methods Enzymol. 1985, 117, 414-459. XAS data measured at Stanford Synchrotron Radiation Laboratory (SSRL beam lines II-3 and VII-3) and National Synchrotron Light Source (NSLS, beam line X-11). Protein fluorescence spectra measured by using large solid angle ion chamber with Soller slits and a Ge filter. Sample 2 measured in transmission mode

⁽¹⁴⁾ $[NEt_4]_2[Hg(SPhCl)_4]$,¹⁵ Hg(Cys)₂Cl·H₂O,¹⁶ and Hg(SCN)₂¹⁷ for Hg-S; Hg(pyridine)₂²⁺¹⁸ for Hg-N. Identical structural results were obtained with the different models. Hg(SEt)₂ was also examined; however, the EXAFS Hg-S distance (2.36 Å) differs from the crystallographic distance (2.45 Å), suggesting an error in the crystal structure. See ref 19.

⁽¹⁵⁾ Choudhury, S.; Dance, I. G.; Guerney, P. J.; Rae, A. D. Inorg. Chim. Acta 1983, 70, 227-230.
(16) Taylor, N. J.; Carty, A. J. J. Am. Chem. Soc. 1977, 99, 6143-6145.
(17) Beauchamp, A. L.; Goutier, D. Can. J. Chem. 1972, 50, 977-981.
(18) Halfpenny, J.; Small, R. W. H.; Thorpe, F. G. Acta Crystallogr. 1978, B34, 3075-3077.

Table	I.	Best	Fits	to	Hg-MerR	EXAFS ^a
-------	----	------	------	----	---------	---------------------------

sample	condition	fit ^b	<i>R</i> , Å	Ns	$\Delta \sigma^2 \times 10^3$, Å ²	<i>R</i> , Å	N _N	$\Delta\sigma^2 \times 10^3, \text{\AA}^2$	F ^r
1	ppt	S	2.42	d					
2	ppt	S	2.43	3	-2.3				4.5
		S + N	2.42	3	0.5	2.36	1	-7.5	2.7
3	lyoph	S	2.43	3	0.9				4.4
	• •	S + N	2.43	2	-1.0	2.27	2	8.6	4.0
4	ppt	S	2.43	3	-0.8				4.5
	••	S + N	2.44	2	-3.1	2.21	2	5.5	2.4
average	-	S	2.43	2	-2.7				3.8
-		S	2.43	3	-0.6				2.5
		S	2.43	4	+1.2				4.2
		S + N	2.44	2	-2.6	2.25	2	10.2	2.2

^a Fits used a range of fixed integer coordination numbers (N) with bond length (R) and Debye-Walter factor ($\Delta\sigma^2$) as freely variable parameters. ^b Fits using sulfur only (S) and using sulfur + nitrogen (S + N) are reported. For samples 2-4, tabulated fits are for values of N giving the best fit for a given fit type (S or S + N). Goodness of fit $F = [(\chi_{calcd}k^3 - \chi_{exptl}k^3)^2/(NPTS - 1)]^{1/2}[(\chi k^3)_{max} - (\chi k^3)_{min}](100\%)$, where χ_{exptl} and χ_{calcd} refer to measured and simulated EXAFS and max and min refer to the maximum and minimum in the weighted, experimental data. ^d Data were extremely noisy and could be fit with one or two shells of sulfur. Subsequent data gave the same average Hg-S distance but did not confirm the two-shell HgS_2S_2' model.

number. However, the strong dependence of Hg-S bond length on coordination number clearly excludes simple HgS₂ or HgS₄ structures. Hg-S bond distances in mononuclear $Hg(SR)_2$ complexes are found from 2.32 to 2.36 Å ($R_{av} = 2.34$ Å) while mo-nonuclear Hg(SR)₄ complexes exhibit Hg–S distances from 2.50 to 2.61 Å ($R_{av} = 2.54$ Å).¹⁹ Although there are few crystallographically characterized mononuclear $Hg(SR)_3$ complexes, the examples that are known have Hg-S distances from 2.40 to 2.51 Å ($R_{av} = 2.44$ Å), consistent with the distance found in MerR.^{9,19,20} A Fourier transform of the averaged Hg-MerR data from samples 2-4 is shown in Figure 1B. No detectable contribution from scatterers at >2.5 Å is observed for Hg-MerR; thus there is no EXAFS evidence for secondary bonding interactions.²¹

We see no evidence for two unresolved shells of scatterers in MerR. Although it is difficult to rigorously exclude contributions from a weak scatterer (Hg-N or Hg-O) in the presence of strong Hg-S EXAFS, two-shell fits (Hg-S + Hg-N) give only modest improvement over one-shell Hg-S fits. Improvement is only seen for the noisiest data, and the refined Hg-N distances vary from sample to sample. This argues against Hg-N ligation, although additional structural data on mercuric complexes having mixed sulfur/nitrogen ligation are necessary. No improvement is observed for two-shell (Hg-S + Hg-S') fits. Chloride or exogenous buffer thiol ligation are unlikely on the basis of spectrophotometric titrations and gel filtration studies using radiolabeled thiols;⁹ thus the EXAFS results suggest coordination by three endogenous sulfur ligands.

Chemical modification experiments corroborate this model. DTNB titrations²² repeated in triplicate on the apoprotein reveal that 6.3 (SD = 0.3) of 8 cysteines per dimer are accessible, consistent with results of Schewchuk et al.⁷ In contrast to that report, titration of the Hg-MerR samples prepared as described for EXAFS reveal that 3.2 (SD = 0.4) cysteines per dimer are available for reaction with DTNB, yielding a net protection of

(19) Wright, J. G.; Natan, M. J.; MacDonnell, F. M.; Ralston, D. M.;
O'Halloran, T. V. Prog. Inorg. Chem., in press.
(20) (a) Christou, G.; Folting, K.; Huffman, J. C. Polyhedron 1984, 3,
1247-1253. (b) Gruff, E. S.; Koch, S. A. J. Am. Chem. Soc., in press.
(21) Weak interactions (e.g., R > 3 Å) are often not detectable by EXAFS; however, the 2.86-Å Hg-thiolate interaction in [NEt₄][Hg₃-(SCH₂CH₂S)₄] (Henkel, G.; Betz, P.; Krebs, B. J. Chem. Soc., Chem. Commun. 1985, 1498-1499) is readily detectable (data not shown), suggesting that any outer-shell thiolates in MerR are more than ca. 2.8 Å from the Hg. Such weak secondary bonding interactions would not lengthen the two-coordinate weak secondary bonding interactions would not lengthen the two-coordinate Hg-S bond distance (in a hypothetical HgS_2S_n' structure) sufficiently to account for the observed first-shell Hg-S distance. EXAFS cannot address the question of secondary bonding interactions at longer Hg-S distances. For further discussion of the secondary bonding interactions in mercuric thiolate

 (22) Riddles, P. W.; Blakeley, R. L.; Zerner, B. Methods Enzymol. 1983,
 91, 49-60. DTNB = 5,5'-dithiobis(2-nitrobenzoic acid). Thiol titrations were modified as follows. MerR and Hg(II)-MerR samples in 1 mM DTT were subjected to anaerobic gel filtration and incubated in an anaerobic stirred spectrophotometric cell with 1 mM DTNB, 100 mM NaHPO₄ (pH = 7.0), 0.5 M NaCl, and 0.1 mM EDTA at 25 °C. Absorption changes at 412 nm were complete in 7 min.

three cysteines per dimer in the Hg-protein.

One of the striking attributes of MerR is its avidity for mercuric ion; the binding is stoichiometric for nanomolar protein and Hg(II) concentrations, even in the presence of 105-fold excess thiol. The tridentate model for Hg-MerR coordination suggests a structural and thermodynamic rationale for the ability of this receptor to discriminate between Zn(II), Cd(II), and Hg(II) while maintaining a nanomolar sensitivity to the latter.⁵ Work aimed at further characterizing MerR metal binding is in progress.

Acknowledgment. This work was supported by the National Institutes of Health (GM-38047 to J.E.P.-H.; GM-38784 to T.V.O.) and by a National Science Foundation Presidential Young Investigator Award (CHE-8657704 to T.V.O.). Synchrotron radiation was provided by SSRL, supported by the U.S. DOE and an NIH Research Resource, and by NSLS beam line X-11. We thank D. Ralston and C. Millikan (Northwestern) for transcriptional assays and synthesis of several model compounds, respectively, and Profs. Walsh and Koch for communicating results prior to publication.

Recognition of Mixed-Sequence Duplex DNA by Alternate-Strand Triple-Helix Formation

David A. Horne and Peter B, Dervan*

Arnold and Mabel Beckman Laboratory of Chemical Synthesis California Institute of Technology Pasadena, California 91,125 Received December 8, 1989

Oligodeoxyribonucleotide-directed triple-helix formation offers a chemical approach for the sequence-specific binding of double-helical DNA that is 10⁶ times more specific than restriction enzymes.^{1,2} Because triple-helix formation by pyrimidine oligonucleotides is limited to purine tracts, it is desirable to find a general solution whereby oligonucleotides could be used to bind all four base pairs of intact duplex DNA (37 °C, pH 7.0). Approaches toward such a goal include the following: the search for other natural triplet specificities, such as G·TA triplets;^{1f} the design of nonnatural bases for completion of the triplet code; the incorporation of abasic residues for nonreading of certain base

^{(1) (}a) Moser, H. E.; Dervan, P. B. Science 1987, 238, 645. (b) Strobel, S. A.; Moser, H. E.; Dervan, P. B. J. Am. Chem. Soc. 1988, 110, 7927. (c) Povsic, T.; Dervan, P. B. J. Am. Chem. Soc. 1989, 111, 3059. (d) Strobel, S. A.; Dervan, P. B. J. Am. Chem. Soc. 1989, 111, 7286. (e) Maher, L. J., III; Wold, B.; Dervan, P. B. Science 1989, 245, 725. (f) Griffin, L. C.; Dervan, P. B. Science 1989, 245, 967.